LD50 is 1807 ppm in rats after 4 hours of exposure MSDS. In humans, exposure to 4000 ppm or more in less than 1 hour leads to death L2542.
Carbon Monoxide Toxicity from Food Ingestion Treated with Carbon Monoxide
Very little information has been published in the literature on the consumer’s exposure to CO-packaged meat. The toxicological aspects of CO used in MAP of meat were reviewed by Sørheim et al. A32747, and they concluded that, with up to about 0.5% of CO, no human toxicity is likely. It has been suggested that the consumption of CO-treated meat is not associated with any health risks, and meat from CO-MAP results only in negligible amounts of CO and COHb in humans L2546, L2548.
Mechanism of CO Toxicity
Once CO is inhaled, it binds with hemoglobin to form carboxyhemoglobin (COHb) with an affinity of 200 times greater than oxygen that leads to decreased oxygen-carrying capacity and the decreased release of oxygen to tissues, causing tissue hypoxia. Ischemia occurs with CO poisoning when there is a loss of consciousness combined with hypotension and ischemia in the arterial border areas of the brain. Besides binding to many heme-containing proteins, CO interrupts oxidative metabolism, leading to the formation of free radicals. Once hypotension and unconsciousness occur with CO poisoning, lipid peroxidation and apoptosis soon follow A32730.
Failure to diagnose CO poisoning may result in morbidity and mortality and allow for continued exposure to a dangerous environment. The management of CO poisoning begins with inhalation of supplemental oxygen therapy and aggressive supportive measures. Hyperbaric oxygen therapy (HBOT) accelerates the dissociation of CO from hemoglobin A32729.
The concentration, exposure time and physical activity of the individual will determine the percentage conversion of haemoglobin to carboxyhaemoglobin. The effects produced depend on the degree and duration of saturation of blood with carbon monoxide L2542.
Levels of Intoxication with Carbon Monoxide A32730
The first symptoms of carbon monoxide exposure when carboxyhemoglobin is 15-30% are generalized, and may include: headache, dizziness, nausea, fatigue, and impaired manual dexterity. Individuals with ischemic heart disease may suffer from chest pain and decreased exercise duration at COHb levels measured from 1% - 9% A32730.
COHb levels between 30-70% lead to loss of consciousness and eventually death A32730.
Long-term Effects A32730
Following the resolution of the acute symptoms, there may be a lucid interval from 2-40 days before the development of delayed neurologic sequelae (DNS). Diffuse brain demyelination combined with lethargy, behavioral changes, memory loss, and parkinsonian features may occur. 75% of patients with DNS recover within 1 year. Neuropsychologic abnormalities with chronic CO exposure are found even when magnetic resonance imaging (MRI) and magnetic resonance spectroscopy findings are normal. White-matter damage in the centrum semiovale and periventricular area of the brain, and abnormalities in the globus pallidus, are most commonly observed on MRI following CO toxicity. Though less common, toxic or ischemic peripheral neuropathies are associated with high levels of CO exposure in humans. The basis for the management of CO poisoning is 100% hyperbaric oxygen therapy using a tight-fitting mask for at least 6 hours. The indications for treatment with hyperbaric oxygen to decrease the half-life of COHb remain controversial A32730.
Carbon monoxide (CO) is a colorless, odorless, and tasteless gas that has a slightly lower density than air. It is toxic to hemoglobin utilizing animals (including humans), when encountered in concentrations above about 35 ppm, although it is also formed in normal animal metabolism in low quantities, and is thought to have some normal biological/homeostatic functions L2529. Carbon monoxide (CO), is a ubiquitous environmental product of organic combustion, which is also formed endogenously in the human body, as the byproduct of heme metabolism A32758. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. Exhalation of corbon monoxide values have been studied as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, and during surgery or critical care L2529.
A test of the diffusing capacity of the lungs for carbon monoxide (DLCO), is one of the most clinically valuable tests of lung function testing. The technique was first described 100 years ago, and applied to clinical practice many years after. The DLCO measures the ability of the lungs to transfer gas from inhaled air to the red blood cells in pulmonary capillaries. The DLCO test is both convenient and simple for the patient to undergo. The ten seconds of breath-holding required for the DLCO maneuver is easier for most patients to perform than the forced exhalation required for other respiratory tests L2557.
Carbon monoxide is presently used in small amounts in low oxygen modified atmosphere packaging systems (MAP) for fresh meat to stabilize and maintain natural meat color. This use of CO has been generally recognized as safe (GRAS) in several packaging applications for fresh meat products. Since 2002, FDA has favorably reviewed three GRAS notifications for carbon monoxide use in fresh meat packaging L2537. The FDA classifies this drug as permitted as a food additive in the packaging and preparation of food products, while following the federal code of regulations L2531.
There have been several concerns voiced of over the use of carbon monoxide in food products L2537, L2538, L2539. The European Union has banned the use of carbon monoxide as a color stabilizer in meat and fish. A December 2001 report from the European Commission's Scientific Committee on Food concluded that the gas did not pose a risk provided that food was maintained adequately cold during storage and transport to prevent the growth of microorganisms L2538. In New Zealand, the use of carbon monoxide in fish preparation has been banned, as it may mask the effects of food spoilage and bacterial growth L2539.
Fitur visualisasi ini dikembangkan menggunakan pendekatan Graph Theory untuk memetakan hubungan polifarmasi dan molekuler. Entitas (Obat, Target, Gen) direpresentasikan sebagai Simpul (Nodes), sedangkan hubungan biologisnya sebagai Sisi (Edges).
drugbank-id dan name pada skema XML DrugBank.targets/target yang memuat polipeptida sasaran.gene-name dan varian snp-effects.Tata letak grafik menggunakan algoritma Force-Directed Graph (Barnes-Hut). Model fisika ini menerapkan gaya tolak-menolak antar simpul (Gravitasi: -3000) agar tidak tumpang tindih, serta gaya pegas (Spring: 0.04) pada garis penghubung untuk fleksibilitas interaksi.